Source code for gillespy2.solvers.utilities.solverutils

# GillesPy2 is a modeling toolkit for biochemical simulation.
# Copyright (C) 2019-2024 GillesPy2 developers.

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

import ast  # for dependency graphing
import numpy as np
from gillespy2.core import log, Species
from gillespy2.core import ModelError

"""
NUMPY SOLVER UTILITIES BELOW
"""


[docs]def numpy_initialization(model): species_mappings = model.sanitized_species_names() species = list(species_mappings.keys()) parameter_mappings = model.sanitized_parameter_names() number_species = len(species) return species_mappings, species, parameter_mappings, number_species
[docs]def numpy_trajectory_base_initialization(model, number_of_trajectories, timeline, species, resume=None): trajectory_base = np.zeros((number_of_trajectories, timeline.size, len(species) + 1)) # copy time values to all trajectory row starts trajectory_base[:, :, 0] = timeline tmpSpecies = {} # copy initial populations to base if resume is not None: # Set initial values of species to where last left off for i in species: tmpSpecies[i] = resume[i][-1] for i, s in enumerate(species): trajectory_base[:, 0, i + 1] = tmpSpecies[s] else: for i, s in enumerate(species): trajectory_base[:, 0, i + 1] = model.listOfSpecies[s].initial_value return trajectory_base, tmpSpecies
[docs]def numpy_resume(timeStopped, simulation_data, resume=None): """ Helper function for when resuming a simulation in a numpy based solver. :param timeStopped: The time in which the simulation was stopped. :param simulation_data: The current models simulation data, after being parsed in the numpy solver of choice. :param resume: The previous simulations data, that is being resumed :type resume: gillespy2.core.Results :returns: Combined simulation data, the old resume data and the current simulation data. """ if timeStopped != 0: if timeStopped != simulation_data[0]['time'][-1]: tester = np.where(simulation_data[0]['time'] > timeStopped)[0].size index = np.where(simulation_data[0]['time'] == timeStopped)[0][0] if tester > 0: for i in simulation_data[0]: simulation_data[0][i] = simulation_data[0][i][:index] if resume is not None: # If resuming, combine old pause with new data, and delete any excess null data for i in simulation_data[0]: oldData = resume[i][:-1] newData = simulation_data[0][i] simulation_data[0][i] = np.concatenate((oldData, newData), axis=None) return simulation_data
""" VARIABLE SOLVER METHODS """
[docs]def update_species_init_values(listOfSpecies, species, variables, resume = None): # Update Species Initial Values populations = '' for i in range(len(species) - 1): if species[i] in variables: populations += '{} '.format(float(variables[species[i]])) else: if resume is not None: populations += '{} '.format(float(resume[species[i]][-1])) else: populations += '{} '.format(float(listOfSpecies[species[i]].initial_value)) if species[-1] in variables: populations += '{}'.format(float(variables[species[-1]])) else: if resume is not None: populations += '{} '.format(float(resume[species[-1]][-1])) else: populations += '{}'.format(float(listOfSpecies[species[-1]].initial_value)) return populations
[docs]def change_param_values(listOfParameters, parameters, volume, variables): # Update Parameter Values parameter_values = '' for i in range(len(parameters) - 1): if parameters[i] in variables: parameter_values += '{} '.format(variables[parameters[i]]) else: if parameters[i] == 'vol': parameter_values += '{} '.format(volume) else: parameter_values += '{} '.format(listOfParameters[parameters[i]].expression) if parameters[-1] in variables: parameter_values += '{}'.format(variables[parameters[-1]]) else: if parameters[-1] == 'vol': parameter_values += '{}'.format(volume) else: parameter_values += '{}'.format(listOfParameters[parameters[-1]].expression) return parameter_values
""" Below are two functions used for creating dependency graphs in the C solvers, and Numpy Solvers. """
[docs]def species_parse(model, custom_prop_fun): """ This function uses Pythons AST module to parse custom propensity function, looking for Species in a model :param model: Model to be checked for species :param custom_prop_fun: The custom propensity function to be parsed :returns: List of species objects that are found in a custom propensity function """ parsed_species = [] class SpeciesParser(ast.NodeTransformer): def visit_Name(self, node): try: if isinstance(model.get_element(node.id), Species): parsed_species.append(model.get_element(node.id)) except ModelError: pass expr = custom_prop_fun expr = ast.parse(expr, mode='eval') expr = SpeciesParser().visit(expr) return parsed_species
[docs]def dependency_grapher(model, reactions): """ This function returns a dependency graph for a models reactions in the form of a dictionary containing {species name: {'dependencies'}:[list of reaction names]}. :param model: Model to used to create a reaction dependency graph :param reactions: list[model.listOfReactions] :returns: Dependency graph dictionary """ dependent_rxns = {} for i in reactions: cust_spec = [] if model.listOfReactions[i].type == 'customized': cust_spec = (species_parse(model, model.listOfReactions[i].propensity_function)) for j in reactions: if i not in dependent_rxns: dependent_rxns[i] = {'dependencies': []} if j not in dependent_rxns: dependent_rxns[j] = {'dependencies': []} if i == j: continue reactantsI = list(model.listOfReactions[i].reactants.keys()) reactantsJ = list(model.listOfReactions[j].reactants.keys()) if j not in dependent_rxns[i]['dependencies']: if any(elem in reactantsI for elem in reactantsJ): if i not in dependent_rxns[j]['dependencies']: dependent_rxns[j]['dependencies'].append(i) dependent_rxns[i]['dependencies'].append(j) if i not in dependent_rxns[j]['dependencies']: if any(elem in list(model.listOfReactions[i].products.keys()) for elem in list(model.listOfReactions[j].reactants.keys())): dependent_rxns[j]['dependencies'].append(i) if cust_spec: if any(elem in cust_spec for elem in list(model.listOfReactions[j].reactants)) or any \ (elem in cust_spec for elem in list(model.listOfReactions[j].products)): dependent_rxns[i]['dependencies'].append(j) return dependent_rxns