Tutorial: ODE vs. SSA

Deterministic ordinary differential equation (ODE) models of biochemical processes are useful and accurate in the high-concentration limit, but often fail to capture stochastic cellular dynamics accurately because the deterministic continuous formulation assumes spatial homogeneity and continuous biomolecule concentrations. Nevertheless, ODE simulations are appropriate in some situations. GillesPy2 includes ODE solvers as well as stochastic solvers, and thus allows you to compare the results of both. This tutorial demonstrates the use of both ODE and stochastic simulation on the same model.

First, in a Python script that uses GillesPy2 to perform model simulation, we begin by importing some basic Python packages needed in the rest of the script:

import gillespy2

Next, we define a model. This is a model based on a publication by Gardner et al. in Nature, 1999, and represents a genetic toggle switch in Escherichia coli. In GillesPy2, a model is expressed as an object having the parent class Model. Components of the model, such as the reactions, molecular species, and characteristics such as the time span for simulation, are all defined within the subclass definition. The following Python code represents our model using GillesPy2’s facility:

def ToggleSwitch(parameter_values=None):
    # Initialize the model.
    gillespy2.Model(name="toggle_switch")

    # Define parameters.
    alpha1 = gillespy2.Parameter(name='alpha1', expression=1)
    alpha2 = gillespy2.Parameter(name='alpha2', expression=1)
    beta = gillespy2.Parameter(name='beta', expression=2.0)
    gamma = gillespy2.Parameter(name='gamma', expression=2.0)
    mu = gillespy2.Parameter(name='mu', expression=1.0)
    model.add_parameter([alpha1, alpha2, beta, gamma, mu])

    # Define molecular species.
    U = gillespy2.Species(name='U', initial_value=10)
    V = gillespy2.Species(name='V', initial_value=10)
    model.add_species([U, V])

    # Define reactions.
    cu = gillespy2.Reaction(name="r1", reactants={}, products={U:1},
                  propensity_function="alpha1/(1+pow(V,beta))")
    cv = gillespy2.Reaction(name="r2", reactants={}, products={V:1},
                  propensity_function="alpha2/(1+pow(U,gamma))")
    du = gillespy2.Reaction(name="r3", reactants={U:1}, products={},
                  rate=mu)
    dv = gillespy2.Reaction(name="r4", reactants={V:1}, products={},
                  rate=mu)
    model.add_reaction([cu, cv, du, dv])

    tspan = gillespy2.TimeSpan.linspace(0, 100, 101)
    model.timespan(tspan)
    return model

Given the class definition above, the model can be simulated by first instantiating the class object, and then invoking the run() method on the object. Invoking run() without any values for the solver keyword argument makes GillesPy2 use the SSA algorithm.

model = ToggleSwitch()
s_results = model.run()

We can run the model again, this time using a deterministic ODE solver.

d_results = model.run(algorithm="ODE")

Now, let’s plot the results of the two methods. First, a plot of the stochastic simulation results:

s_results.plot(title="Stochastic Switch")
../../_images/stochastic.png

And here is a plot of the deterministic simulation results:

d_results.plot(title="Deterministic Switch")
../../_images/ode.png