Source code for gillespy2.solvers.utilities.Tau

# GillesPy2 is a modeling toolkit for biochemical simulation.
# Copyright (C) 2019-2024 GillesPy2 developers.

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""
This Python module contains the initialization and selection methods for the Tau-Leaping method described in Cao, Y.;
Gillespie, D. T.; Petzold, L. R. (2006). "Efficient step size selection for the tau-leaping simulation method" (PDF).
The Journal of Chemical Physics. 124 (4): 044109. Bibcode:2006JChPh.124d4109C. doi:10.1063/1.2159468. PMID 16460151.
This module is for use in the basic_tau_leaping_solver and basic_tau_hybrid solver only.
"""


[docs]def initialize(model, epsilon): """ This method initailizes the state for tau-leaping selections to be made. Based on Cao, Y.; Gillespie, D. T.; Petzold, L. R. (2006). "Efficient step size selection for the tau-leaping simulation method" (PDF). The Journal of Chemical Physics. 124 (4): 044109. Bibcode:2006JChPh.124d4109C. doi:10.1063/1.2159468. PMID 16460151 """ HOR = {} # Highest Order Reaction of species reactants = set() # a list of all species in the model which act as reactants mu_i = {} # mu_i for each species sigma_i = {} # sigma_i squared for each species g_i = {} # Relative species error allowance denominator epsilon_i = {} # Relative error allowance of species critical_threshold = 10 # Reactant Population to be considered critical # initialize Highest Order Reactions for s in model.listOfSpecies: HOR[s] = 0 # Create list of all reactants for r in model.listOfReactions: # Calculate this reaction's order reaction_order = sum(model.listOfReactions[r].reactants.values()) for reactant, count in model.listOfReactions[r].reactants.items(): # Build reactant list reactants.add(reactant) # Initialize mu and sigma for each reactant mu_i[reactant.name] = 0 sigma_i[reactant.name] = 0 # if this reaction's order is higher than previous, set HOR if reaction_order > HOR[reactant.name]: HOR[reactant.name] = reaction_order if count == 2 and reaction_order == 2: g_i[reactant.name] = lambda x: 2 + (1 / (x - 1)) elif count == 2 and reaction_order == 3: g_i[reactant.name] = lambda x: (3 / 2) * (2 + (1 / (x - 1))) elif count == 3: g_i[reactant.name] = lambda x: (3 + (1 / (x - 1)) + (2 / (x - 2))) else: g_i[reactant.name] = HOR[reactant.name] epsilon_i[reactant.name] = epsilon / g_i[reactant.name] # Return components for tau selection return HOR, reactants, mu_i, sigma_i, g_i, epsilon_i, critical_threshold
[docs]def select(*tau_args): """ Tau Selection method based on Cao, Y.; Gillespie, D. T.; Petzold, L. R. (2006). "Efficient step size selection for the tau-leaping simulation method" (PDF). The Journal of Chemical Physics. 124 (4): 044109. Bibcode:2006JChPh.124d4109C. doi:10.1063/1.2159468. PMID 16460151 """ HOR, reactants, mu_i, sigma_i, g_i, epsilon_i, epsilon, critical_threshold, model, propensities, curr_state, \ curr_time, save_time = tau_args tau_step = 0 crit_taus = {} # Estimated time to single-firing of critical reactions critical_reactions = [] # List of critical reactions at this step critical = False # system-wide flag, true when any reaction is critical critical_tau = 0 # holds the smallest tau time for critical reactions non_critical_tau = 0 # holds the smallest tau time for non-critical reactions tau = 0 # Determine if there are any critical reactions for rxn in model.listOfReactions: for r, v in model.listOfReactions[rxn].reactants.items(): if curr_state[r.name] / v < critical_threshold and propensities[rxn] > 0: critical_reactions.append(rxn) critical = True # If a critical reaction is present, estimate tau for a single firing of each # critical reaction with propensity > 0, and take the smallest tau if critical: for rxn in model.listOfReactions: if propensities[rxn] > 0: crit_taus[rxn] = 1 / propensities[rxn] critical_tau = min(crit_taus.values()) # If a reactant's HOR requires >1 of that reactant, evaluate lambda at curr_state for r in g_i: if callable(g_i[r]): g_i[r] = g_i[r](curr_state[r]) epsilon_i[r] = epsilon / g_i[r] tau_i = {} # estimated tau for non-critical reactions mu_i = {species.name: 0 for species in model.listOfSpecies.values()} sigma_i = {species.name: 0 for species in model.listOfSpecies.values()} for r in model.listOfReactions: # Calculate abs mean and standard deviation for each reactant for reactant in model.listOfReactions[r].reactants: net_change = model.listOfReactions[r].reactants[reactant] if reactant in model.listOfReactions[r].products: net_change -= model.listOfReactions[r].products[reactant] net_change = abs(net_change) mu_i[reactant.name] += net_change * propensities[r] # Cao, Gillespie, Petzold 32a sigma_i[reactant.name] += net_change ** 2 * propensities[r] # Cao, Gillespie, Petzold 32b for r in reactants: calculated_max = epsilon_i[r.name] * curr_state[r.name] max_pop_change_mean = max(calculated_max, 1) max_pop_change_sd = max(calculated_max, 1) ** 2 if mu_i[r.name] > 0: # Cao, Gillespie, Petzold 33 tau_i[r.name] = min( abs(max_pop_change_mean / mu_i[r.name]), max_pop_change_sd / sigma_i[r.name]) if len(tau_i) > 0: non_critical_tau = min(tau_i.values()) for r in model.listOfReactions: # Calculate abs mean and standard deviation for each reactant for product in model.listOfReactions[r].products: mu_i[product.name] -= model.listOfReactions[r].products[product] * propensities[ r] # Cao, Gillespie, Petzold 32a sigma_i[product.name] += model.listOfReactions[r].products[product] ** 2 * propensities[ r] # Cao, Gillespie, Petzold 32b # If all reactions are non-critical, use non-critical tau. if not critical: tau = non_critical_tau # If all rxns are critical, use critical tau. elif len(tau_i) == 0: tau = critical_tau # If there are both critical and non-critical reactions, # take the shortest tau between critical and non-critical. else: tau = min(non_critical_tau, critical_tau) # If selected tau exceeds save time, integrate to save time if tau > 0: tau = max(tau, 1e-10) # set minimum to prevent integration errors if save_time - curr_time > 0: tau = min(tau, save_time - curr_time) else: tau = save_time - curr_time return tau