Source code for gillespy2.solvers.numpy.ssa_solver

# GillesPy2 is a modeling toolkit for biochemical simulation.
# Copyright (C) 2019-2024 GillesPy2 developers.

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

import copy
from threading import Thread, Event
from gillespy2.core.results import Results
from gillespy2.core import GillesPySolver, log
from gillespy2.core.gillespyError import *
from gillespy2.solvers.utilities import solverutils as nputils
import random
import math
import numpy as np
np.set_printoptions(suppress=True)


[docs]class NumPySSASolver(GillesPySolver): """ This solver produces simulations of systems via Stochastic Simulation Algorithm. :param model: The model on which the solver will operate. :type model: gillespy2.Model """ name = "NumPySSASolver" rc = 0 stop_event = None result = None pause_event = None def __init__(self, model=None): if model is None: raise SimulationError("A model is required to run the simulation.") name = 'NumPySSASolver' rc = 0 stop_event = None result = None pause_event = None self.model = copy.deepcopy(model) self.is_instantiated = True
[docs] @classmethod def get_solver_settings(cls): """ Returns a list of arguments supported by the ssa_solver.run :returns: Tuple of strings, denoting all keyword argument for this solvers run() method. :rtype: tuple """ return ('model', 't', 'number_of_trajectories', 'increment', 'seed', 'debug', 'timeout')
[docs] def run(self=None, model=None, t=None, number_of_trajectories=1, increment=None, seed=None, debug=False, live_output=None, live_output_options={}, timeout=None, resume=None, **kwargs): """ Run the SSA algorithm. Uses a NumPy array for storing results and for generating the timeline. :param model: The model on which the solver will operate. (Deprecated) :type model: gillespy2.Model :param t: The end time of the solver. :type t: int or float :param number_of_trajectories: Number of trajectories to simulate. By default number_of_trajectories = 1. :type number_of_trajectories: int :param increment: The time step of the solution. :type increment: float :param seed: The random seed for the simulation. Defaults to None. :type seed: int :param debug: Set to True to provide additional debug information about the simulation. :type debug: bool :param live_output: The type of output to be displayed by solver. Can be "progress", "text", or "graph". :type live_output: str :param live_output_options: dictionary contains options for live_output. By default {"interval":1}. "interval" specifies seconds between displaying. "clear_output" specifies if display should be refreshed with each display. :type live_output_options: dict :param timeout: If set, if simulation takes longer than timeout, will exit. :type timeout: int :param resume: Result of a previously run simulation, to be resumed. :type resume: gillespy2.Results :returns: A result object containing the results of the simulation. :rtype: gillespy2.Results """ from gillespy2 import log if self is None: # Post deprecation block # raise SimulationError("NumPySSASolver must be instantiated to run the simulation") # Pre deprecation block log.warning( """ `gillespy2.Model.run(solver=NumPySSASolver)` is deprecated. You should use `gillespy2.Model.run(solver=NumPySSASolver(model=gillespy2.Model)) Future releases of GillesPy2 may not support this feature. """ ) self = NumPySSASolver(model=model) if model is not None: log.warning('model = gillespy2.model is deprecated. Future releases ' 'of GillesPy2 may not support this feature.') if self.model is None: if model is None: raise SimulationError("A model is required to run the simulation.") self.model = copy.deepcopy(model) self.model.compile_prep() self.validate_model(self.model, model) self.validate_sbml_features(model=self.model) self.validate_tspan(increment=increment, t=t) if increment is None: increment = self.model.tspan[-1] - self.model.tspan[-2] if t is None: t = self.model.tspan[-1] self.stop_event = Event() self.pause_event = Event() if timeout is not None and timeout <= 0: timeout = None if len(kwargs) > 0: for key in kwargs: log.warning('Unsupported keyword argument to {0} solver: {1}'.format(self.name, key)) # create numpy array for timeline if resume is not None: # start where we last left off if resuming a simulation lastT = resume['time'][-1] step = lastT - resume['time'][-2] timeline = np.arange(lastT, t + step, step) else: timeline = np.linspace(0, t, int(round(t / increment + 1))) species = list(self.model._listOfSpecies.keys()) trajectory_base, tmpSpecies = nputils.numpy_trajectory_base_initialization(self.model, number_of_trajectories, timeline, species, resume=resume) # curr_time and curr_state are list of len 1 so that __run receives reference if resume is not None: total_time = [resume['time'][-1]] else: total_time = [0] curr_state = [None] live_grapher = [None] sim_thread = Thread(target=self.___run, args=(curr_state, total_time, timeline, trajectory_base, live_grapher,), kwargs={'t': t, 'number_of_trajectories': number_of_trajectories, 'increment': increment, 'seed': seed, 'debug': debug, 'resume': resume, }) try: time = 0 sim_thread.start() if live_output is not None: import gillespy2.core.liveGraphing live_output_options['type'] = live_output gillespy2.core.liveGraphing.valid_graph_params(live_output_options) if resume is not None: resumeTest = True # If resuming, relay this information to live_grapher else: resumeTest = False live_grapher[0] = gillespy2.core.liveGraphing.LiveDisplayer(self.model, timeline, number_of_trajectories, live_output_options,resume = resumeTest) display_timer = gillespy2.core.liveGraphing.RepeatTimer(live_output_options['interval'], live_grapher[0].display, args=(curr_state, total_time, trajectory_base, live_output ) ) display_timer.start() if timeout is not None: while sim_thread.is_alive(): sim_thread.join(.1) time += .1 if time >= timeout: break else: while sim_thread.is_alive(): sim_thread.join(.1) if live_grapher[0] is not None: display_timer.cancel() self.stop_event.set() while self.result is None: pass except KeyboardInterrupt: if live_output: display_timer.pause = True display_timer.cancel() self.pause_event.set() while self.result is None: pass if hasattr(self, 'has_raised_exception'): raise SimulationError( f"Error encountered while running simulation:\nReturn code: {int(self.rc)}.\n" ) from self.has_raised_exception return Results.build_from_solver_results(self, live_output_options)
def ___run(self, curr_state, total_time, timeline, trajectory_base, live_grapher, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, resume=None, ): try: self.__run(curr_state, total_time, timeline, trajectory_base, live_grapher, t, number_of_trajectories, increment, seed, debug, resume) except Exception as e: self.has_raised_exception = e self.result = [] return [], -1 def __run(self, curr_state, total_time, timeline, trajectory_base, live_grapher, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, resume=None,): # for use with resume, determines how much excess data to cut off due to # how species and time are initialized to 0 timeStopped = 0 if resume is not None: if resume[0].model != self.model: raise ModelError('When resuming, one must not alter the model being resumed.') if t < resume['time'][-1]: raise ExecutionError( "'t' must be greater than previous simulations end time, or set in the run() method as the " "simulations next end time") random.seed(seed) species_mappings, species, parameter_mappings, number_species = nputils.numpy_initialization(self.model) # create dictionary of all constant parameters for propensity evaluation parameters = {'V': self.model.volume} for paramName, param in self.model.listOfParameters.items(): parameters[parameter_mappings[paramName]] = param.value # create mapping of reaction dictionary to array indices reactions = list(self.model.listOfReactions.keys()) # create mapping of reactions, and which reactions depend on their reactants/products dependent_rxns = nputils.dependency_grapher(self.model, reactions) number_reactions = len(reactions) propensity_functions = {} # create an array mapping reactions to species modified species_changes = np.zeros((number_reactions, number_species)) # pre-evaluate propensity equations from strings: for i, reaction in enumerate(reactions): # replace all references to species with array indices for j, spec in enumerate(species): species_changes[i][j] = self.model.listOfReactions[reaction].products.get(self.model.listOfSpecies[spec], 0) \ - self.model.listOfReactions[reaction].reactants.get(self.model.listOfSpecies[spec], 0) if debug: print('species_changes: {0},i={1}, j={2}... {3}'.format(species, i, j, species_changes[i][j])) propensity_functions[reaction] = [eval('lambda S:' + self.model.listOfReactions[reaction]. sanitized_propensity_function(species_mappings, parameter_mappings), parameters), i] if debug: print('propensity_functions', propensity_functions) # begin simulating each trajectory simulation_data = [] for trajectory_num in range(number_of_trajectories): if self.stop_event.is_set(): self.rc = 33 break elif self.pause_event.is_set(): timeStopped = timeline[entry_count] break # For multi trajectories, live_grapher needs to be informed of trajectory increment if live_grapher[0] is not None: live_grapher[0].increment_trajectory(trajectory_num) # copy initial state data trajectory = trajectory_base[trajectory_num] entry_count = 1 curr_state[0] = {} # curr_time and curr_state are list of len 1 so that __run receives reference if resume is not None: curr_time = [resume['time'][-1]] else: curr_time = [0] for spec in self.model.listOfSpecies: if resume is not None: curr_state[0][spec] = resume[spec][-1] else: curr_state[0][spec] = self.model.listOfSpecies[spec].initial_value propensity_sums = np.zeros(number_reactions) # calculate initial propensity sums while entry_count < timeline.size: if self.stop_event.is_set(): self.rc = 33 break elif self.pause_event.is_set(): timeStopped = timeline[entry_count] break # determine next reaction species_states = list(curr_state[0].values()) for i in range(number_reactions): propensity_sums[i] = propensity_functions[reactions[i]][0](species_states) if debug: print('propensity: ', propensity_sums[i]) propensity_sum = np.sum(propensity_sums) if debug: print('propensity_sum: ', propensity_sum) # if no more reactions, quit if propensity_sum <= 0: trajectory[entry_count:, 1:] = list(species_states) break cumulative_sum = random.uniform(0, propensity_sum) rand = random.random() curr_time[0] += -math.log(rand) / propensity_sum total_time[0] += -math.log(rand) / propensity_sum if debug: print('cumulative sum: ', cumulative_sum) print('entry count: ', entry_count) print('timeline.size: ', timeline.size) print('curr_time: ', curr_time[0]) # determine time passed in this reaction while entry_count < timeline.size and timeline[entry_count] <= curr_time[0]: if self.stop_event.is_set(): self.rc = 33 break elif self.pause_event.is_set(): timeStopped = timeline[entry_count] break trajectory[entry_count, 1:] = species_states entry_count += 1 for potential_reaction in range(number_reactions): cumulative_sum -= propensity_sums[potential_reaction] if debug: print('if <=0, fire: ', cumulative_sum) if cumulative_sum <= 0: for i,spec in enumerate(self.model.listOfSpecies): curr_state[0][spec] += species_changes[potential_reaction][i] reacName = reactions[potential_reaction] if debug: print('current state: ', curr_state[0]) print('species_changes: ', species_changes) print('updating: ', potential_reaction) species_states = list(curr_state[0].values()) for i in dependent_rxns[reacName]['dependencies']: propensity_sums[propensity_functions[i][1]] = propensity_functions[i][0](species_states) if debug: print('new propensity sum: ', propensity_sums[i]) break data = { 'time': timeline } for i in range(number_species): data[species[i]] = trajectory[:, i+1] simulation_data.append(data) # If simulation has been paused, or tstopped !=0 if timeStopped != 0 or resume is not None: simulation_data = nputils.numpy_resume(timeStopped, simulation_data, resume=resume) self.result = simulation_data return self.result, self.rc