Source code for gillespy2.core.timespan

# GillesPy2 is a modeling toolkit for biochemical simulation.
# Copyright (C) 2019-2024 GillesPy2 developers.

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
from collections.abc import Iterator

import numpy as np

from gillespy2.core.jsonify import Jsonify
from .gillespyError import TimespanError

[docs]class TimeSpan(Iterator, Jsonify): """ Model timespan that describes the duration to run the simulation and at which timepoint to sample the species populations during the simulation. :param items: Evenly-spaced list of times at which to sample the species populations during the simulation. Best to use the form np.linspace(<start time>, <end time>, <number of time-points, inclusive>) :type items: list, tuple, range, or numpy.ndarray :raises TimespanError: items is an invalid type. """ def __init__(self, items): if isinstance(items, np.ndarray): self.items = items elif isinstance(items, (list, tuple, range)): self.items = np.array(items) else: raise TimespanError("Timespan must be of type: list, tuple, range, or numpy.ndarray.") self.validate() def __str__(self): return self.items.__str__() def __eq__(self, o): return self.items.__eq__(o).all() def __getitem__(self, key): return self.items.__getitem__(key) def __iter__(self): return self.items.__iter__() def __len__(self): return self.items.__len__() def __next__(self): return self.items.__next__()
[docs] @classmethod def linspace(cls, t=20, num_points=None): """ Creates a timespan using the form np.linspace(0, <t>, <num_points, inclusive>). :param t: End time for the simulation. :type t: float | int :param num_points: Number of sample points for the species populations during the simulation. :type num_points: int :returns: Timespan for the model. :rtype: gillespy2.TimeSpan :raises TimespanError: t or num_points are None, <= 0, or invalid type. """ if t is None or not isinstance(t, (int, float)) or t <= 0: raise TimespanError("t must be a positive float or int.") if num_points is not None and (not isinstance(num_points, int) or num_points <= 0): raise TimespanError("num_points must be a positive int.") if num_points is None: num_points = int(t / 0.05) + 1 items = np.linspace(0, t, num_points) return cls(items)
[docs] @classmethod def arange(cls, increment, t=20): """ Creates a timespan using the form np.arange(0, <t, inclusive>, <increment>). :param increment: Distance between sample points for the species populations during the simulation. :type increment: float | int :param t: End time for the simulation. :type t: float | int :returns: Timespan for the model. :rtype: gillespy2.TimeSpan :raises TimespanError: t or increment are None, <= 0, or invalid type. """ if t is None or not isinstance(t, (int, float)) or t <= 0: raise TimespanError("t must be a positive floar or int.") if not isinstance(increment, (float, int)) or increment <= 0: raise TimespanError("increment must be a positive float or int.") items = np.arange(0, t + increment, increment) return cls(items)
[docs] def validate(self): """ Validate the models time span :raises TimespanError: Timespan is an invalid type, empty, not uniform, contains a single \ repeated value, or contains a negative initial time. """ if not isinstance(self.items, np.ndarray): if not isinstance(self.items, (list, tuple, range)): raise TimespanError("Timespan must be of type: list, tuple, range, or numpy.ndarray.") self.items = np.array(self.items) if len(self.items) == 0: raise TimespanError("Timespans must contain values.") if self.items[0] < 0: raise TimespanError("Simulation must run from t=0 to end time (t must always be positive).") first_diff = self.items[1] - self.items[0] other_diff = self.items[2:] - self.items[1:-1] isuniform = np.isclose(other_diff, first_diff).all() if not isuniform: raise TimespanError("GillesPy2 only supports uniform timespans.") if first_diff == 0 or np.count_nonzero(other_diff) != len(other_diff): raise TimespanError("Timespan can't contain a single repeating value.")