Source code for gillespy2.core.results

# GillesPy2 is a modeling toolkit for biochemical simulation.
# Copyright (C) 2019-2024 GillesPy2 developers.

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
import os
import csv

from datetime import datetime
from collections import UserDict, UserList

import numpy as np

from gillespy2.core.jsonify import Jsonify
from gillespy2.core.gillespyError import ValidationError

[docs]def common_rgb_values(): ''' List of 50 hex color values used for plotting graphs ''' return [ '#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf', '#ff0000', '#00ff00', '#0000ff', '#ffff00', '#00ffff', '#ff00ff', '#800000', '#808000', '#008000', '#800080', '#008080', '#000080', '#ff9999', '#ffcc99', '#ccff99', '#cc99ff', '#ffccff', '#62666a', '#8896bb', '#77a096', '#9d5a6c', '#9d5a6c', '#eabc75', '#ff9600', '#885300', '#9172ad', '#a1b9c4', '#18749b', '#dadecf', '#c5b8a8', '#000117', '#13a8fe', '#cf0060', '#04354b', '#0297a0', '#037665', '#eed284', '#442244', '#ffddee', '#702afb' ]
def _plot_iterate(self, show_labels=True, included_species_list=[]): import matplotlib.pyplot as plt # pylint: disable=import-outside-toplevel for i, species in enumerate(self.data): if species != 'time': if species not in included_species_list and included_species_list: continue line_color = common_rgb_values()[(i - 1) % len(common_rgb_values())] if show_labels: label = species else: label = "" plt.plot(self.data['time'], self.data[species], label=label, color=line_color) def _plotplotly_iterate(trajectory, show_labels=True, trace_list=None, line_dict=None, included_species_list=[]): """ Helper method for Results .plotplotly() method """ if trace_list is None: trace_list = [] import plotly.graph_objs as go # pylint: disable=import-outside-toplevel for i, species in enumerate(trajectory.data): if species != 'time': if species not in included_species_list and included_species_list: continue if line_dict is None: line_dict = {} # If number of species exceeds number of available colors, loop back through colors line_dict['color'] = common_rgb_values()[(i-1)%len(common_rgb_values())] if show_labels: trace_list.append( go.Scatter( x=trajectory.data['time'], y=trajectory.data[species], mode='lines', name=species, line=line_dict, legendgroup=species ) ) else: trace_list.append( go.Scatter( x=trajectory.data['time'], y=trajectory.data[species], mode='lines', name=species, line=line_dict, legendgroup=species, showlegend=False ) ) return trace_list
[docs]class Trajectory(UserDict, Jsonify): """ Trajectory Dict created by a gillespy2 solver containing single trajectory, extends the UserDict object. :param data: A dictionary of trajectory values created by a solver :type data: UserDict :param model: The name of the model used to create the trajectory :type model: str :param solver_name: The name of the solver used to create the trajectory :type solver_name: str :param rc: The solvers status return code. :type rc: int :param status: The solver status ('Success','Timed out') """ def __init__(self, data, model=None, solver_name="Undefined solver name", rc=0): self.data = data self.model = model self.solver_name = solver_name self.rc = rc status_list = {0: 'Success', 33: 'Timed Out'} self.status = status_list[rc] def __getitem__(self, key): if isinstance(key, int): from gillespy2.core import log # pylint: disable=import-outside-toplevel species = list(self.data.keys())[key] msg = "Trajectory is of type dictionary." msg += f"Use trajectory['[{species}]'] instead of trajectory[{key}]['{species}']" msg += f"Retrieving trajectory['[{species}]']" log.warning(msg) return self.data[species] if key in self.data: return self.data[key] if hasattr(self.__class__, "__missing__"): return self.__class__.__missing__(self, key) raise KeyError(key)
[docs]class Results(UserList, Jsonify): """ List of Trajectory objects created by a gillespy2 solver, extends the UserList object. :param data: A list of trajectory objects :type data: UserList """ def __init__(self, data): self.data = data def __getattribute__(self, key): if key in ('model', 'solver_name', 'rc', 'status'): if len(self.data) > 1: from gillespy2.core import log # pylint: disable=import-outside-toplevel msg = f"Results is of type list. Use results[i]['{key}'] instead of results['{key}']" log.warning(msg) return getattr(Results.__getattribute__(self, key='data')[0], key) return UserList.__getattribute__(self, key) def __getitem__(self, key): if key == 'data': return UserList.__getitem__(self, key) if isinstance(key, str): if len(self.data) > 1: from gillespy2.core import log # pylint: disable=import-outside-toplevel msg = f"Results is of type list. Use results[i]['{key}'] instead of results['{key}']" log.warning(msg) return self.data[0][key] return UserList.__getitem__(self,key) def __add__(self, other): combined_data = Results(data=(self.data + other.data)) consistent_solver = combined_data._validate_solver() consistent_model = combined_data._validate_model() if not consistent_solver: from gillespy2.core import log # pylint: disable=import-outside-toplevel log.warning("Results objects contain Trajectory objects from multiple solvers.") if not consistent_model: raise ValidationError('Results objects contain Trajectory objects from multiple models.') return combined_data def __radd__(self, other): if other == 0: return self return self.__add__(other) def _validate_model(self, reference=None): is_valid = True if reference is not None: reference_model = reference else: reference_model = self.data[0].model.get_json_hash() for trajectory in self.data: if trajectory.model.get_json_hash() != reference_model: is_valid = False return is_valid def _validate_solver(self, reference=None): is_valid = True if reference is not None: reference_solver = reference else: reference_solver = self.data[0].solver_name for trajectory in self.data: if trajectory.solver_name != reference_solver: is_valid = False return is_valid def _validate_title(self, show_title): if not show_title: title = '' return title if self._validate_model(): title_model = self.data[0].model.name else: title_model = 'Multiple Models' if self._validate_solver(): title_solver = self.data[0].solver_name else: title_solver = 'Multiple Solvers' title = (title_model + " - " + title_solver) return title
[docs] def to_array(self): ''' Convert the results object into a numpy array. :returns: Array containing the result of the simulation. :rtype: numpy.ndarray ''' results = [] size1 = len(self.data[0]['time']) size2 = len(self.data[0]) for trajectory in self.data: new_array = np.zeros((size1, size2)) for j, key in enumerate(trajectory): new_array[:, j] = trajectory[key] results.append(new_array) return np.array(results)
[docs] @classmethod def build_from_solver_results(cls, solver, live_output_options): """ Build a gillespy2.Results object using the provided solver results. :param solver: The solver used to run the simulation. :type solver: gillespy2.GillesPySolver :param live_output_options: dictionary contains options for live_output. By default {"interval":1}. "interval" specifies seconds between displaying. "clear_output" specifies if display should be refreshed with each display :type live_output_options: dict """ if solver.rc == 33: from gillespy2.core import log # pylint: disable=import-outside-toplevel log.warning('GillesPy2 simulation exceeded timeout.') if hasattr(solver.result[0], 'shape'): return solver.result if len(solver.result) > 0: results_list = [] for result in solver.result: temp = Trajectory(data=result, model=solver.model, solver_name=solver.name, rc=solver.rc) results_list.append(temp) results = Results(results_list) if "type" in live_output_options.keys() and live_output_options['type'] == "graph": results.plot() return results raise ValueError("number_of_trajectories must be non-negative and non-zero")
[docs] def to_csv(self, path=".", nametag=None, stamp=None, suffix=".odf", verbose=False): """ Outputs the Results to one or more .csv files in a new directory. :param nametag: allows the user to optionally "tag" the directory and included files. Defaults to the model name. :type nametag: str :param path: the location for the new directory and included files. Defaults to model location. :type path: str :param stamp: Allows the user to optionally "tag" the directory (not included files). Default is timestamp. :type stamp: str :param verbose: Print useful informataion. :type verbose: str :returns: Path to the observed data files. :rtype: str """ if stamp is None: now = datetime.now() stamp = datetime.timestamp(now) if nametag is None: identifier = self._validate_title(show_title=True) else: identifier = nametag directory = os.path.join(path, f"{identifier}-{stamp}{suffix}") if verbose: print(f"Writing data to: {directory}") # multiple trajectories if isinstance(self.data, list): os.makedirs(directory) for i, trajectory in enumerate(self.data): # write each CSV file filename = os.path.join(directory, str(identifier)+str(i)+".csv") field_names = [] for species in trajectory: # build the header field_names.append(species) with open(filename, 'w', newline='', encoding="utf-8") as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(field_names) # write the header for j, _ in enumerate(trajectory['time']): # write all lines of the CSV file this_line=[] for species in trajectory: # build one line of the CSV file this_line.append(trajectory[species][j]) csv_writer.writerow(this_line) # write one line of the CSV file return directory
[docs] def plot(self, index=None, xaxis_label="Time", xscale='linear', yscale='linear', yaxis_label="Value", style="default", title=None, show_title=False, show_legend=True, multiple_graphs=False, included_species_list=[], save_png=False, figsize=(18, 10)): """ Plots the Results using matplotlib. :param index: If not none, the index of the Trajectory to be plotted. :type index: int :param xaxis_label: The label for the x-axis :type xaxis_label: str :param yaxis_label: The label for the y-axis :type yaxis_label: str :param title: The title of the graph :type title: str :param multiple_graphs: IF each trajectory should have its own graph or if they should overlap. :type multiple_graphs: bool :param included_species_list: A list of strings describing which species to include. By default displays all species. :type included_species_list: list :param save_png: Should the graph be saved as a png file. If True, File name is title of graph. If a string is given, file is named after that string. :type save_png: bool or str :param figsize: The size of the graph. A tuple of the form (width,height). Is (18,10) by default. :type figsize: tuple of ints (x,y) """ import matplotlib.pyplot as plt # pylint: disable=import-outside-toplevel from collections.abc import Iterable # pylint: disable=import-outside-toplevel trajectory_list = [] if isinstance(index, Iterable): for i in index: trajectory_list.append(self.data[i]) elif isinstance(index, int): trajectory_list.append(self.data[index]) else: trajectory_list = self.data if title is None: title = self._validate_title(show_title) if len(trajectory_list) < 2: multiple_graphs = False if multiple_graphs: for i, trajectory in enumerate(trajectory_list): result = Results(data=[trajectory]) if isinstance(save_png, str): result.plot(xaxis_label=xaxis_label, yaxis_label=yaxis_label, title=title + " " + str(i + 1), style=style, included_species_list=included_species_list, save_png=save_png + str(i + 1) , figsize=figsize) else: result.plot(xaxis_label=xaxis_label, yaxis_label=yaxis_label, title=title + " " + str(i + 1), style=style, included_species_list=included_species_list, save_png=save_png, figsize=figsize) else: try: plt.style.use(style) except Exception: from gillespy2.core import log # pylint: disable=import-outside-toplevel msg = f"Invalid matplotlib style. Try using one of the following {plt.style.available}" log.warning(msg) plt.style.use("default") plt.figure(figsize=figsize) plt.title(title, fontsize=18) plt.xlabel(xaxis_label) plt.ylabel(yaxis_label) plt.xscale(xscale) plt.yscale(yscale) for i, trajectory in enumerate(trajectory_list): if i > 0: _plot_iterate(trajectory, included_species_list=included_species_list, show_labels=False) else: _plot_iterate(trajectory, included_species_list=included_species_list) if show_legend: plt.legend(loc='best') plt.plot() if isinstance(save_png, str): plt.savefig(save_png) elif save_png: plt.savefig(title)
[docs] def plotplotly(self, index=None, xaxis_label="Time", yaxis_label="Value", title=None, show_title=False, show_legend=True, multiple_graphs=False, included_species_list=[], return_plotly_figure=False, **layout_args): """ Plots the Results using plotly. Can only be viewed in a Jupyter Notebook. :param index: If not none, the index of the Trajectory to be plotted. :type index: int :param xaxis_label: The label for the x-axis :type xaxis_label: str :param yaxis_label: The label for the y-axis :type yaxis_label: str :param title: The title of the graph :type title: str :param show_title: If True, title will be shown on graph. :type show_title: bool :param show_legend: Default True, if False, legend will not be shown on graph. :type show_legend: bool :param multiple_graphs: IF each trajectory should have its own graph or if they should overlap. :type multiple_graphs: bool :param included_species_list: A list of strings describing which species to include. By default displays all species. :type included_species_list: list :param return_plotly_figure: Whether or not to return a figure dictionary of data(graph object traces) and layout which may be edited by the user :type return_plotly_figure: bool :param **layout_args: Optional additional arguments to be passed to plotlys layout constructor. :type **layout_args: dict """ from plotly.offline import init_notebook_mode, iplot # pylint: disable=import-outside-toplevel import plotly.graph_objs as go # pylint: disable=import-outside-toplevel # Backwards compatibility with xaxis_label argument (which duplicates plotly's xaxis_title argument) if layout_args.get('xaxis_title') is not None: xaxis_label = layout_args.get('xaxis_title') layout_args.pop('xaxis_title') if layout_args.get('yaxis_title') is not None: yaxis_label = layout_args.get('yaxis_title') layout_args.pop('yaxis_title') init_notebook_mode() from collections.abc import Iterable # pylint: disable=import-outside-toplevel trajectory_list = [] if isinstance(index, Iterable): for i in index: trajectory_list.append(self.data[i]) elif isinstance(index, int): trajectory_list.append(self.data[index]) else: trajectory_list = self.data number_of_trajectories = len(trajectory_list) if title is None: title = self._validate_title(show_title) fig = dict(data=[], layout=[]) if len(trajectory_list) < 2: multiple_graphs = False if multiple_graphs: from plotly import subplots # pylint: disable=import-outside-toplevel fig = subplots.make_subplots(print_grid=False, rows=int(number_of_trajectories/2) + int(number_of_trajectories % 2), cols=2) for i, trajectory in enumerate(trajectory_list): if i > 0: trace_list = _plotplotly_iterate(trajectory, trace_list=[], included_species_list= included_species_list, show_labels=False) else: trace_list = _plotplotly_iterate(trajectory, trace_list=[], included_species_list= included_species_list) for trace in trace_list: if i % 2 == 0: fig.append_trace(trace, int(i/2) + 1, 1) else: fig.append_trace(trace, int(i/2) + 1, 2) fig['layout'].update( autosize=True, height=400*len(trajectory_list), showlegend=show_legend, title=title ) else: trace_list = [] for i, trajectory in enumerate(trajectory_list): if i > 0: trace_list = _plotplotly_iterate(trajectory, trace_list=trace_list, included_species_list= included_species_list, show_labels=False) else: trace_list = _plotplotly_iterate(trajectory, trace_list=trace_list, included_species_list= included_species_list) layout = go.Layout( showlegend=show_legend, title=title, xaxis_title=xaxis_label, yaxis_title=yaxis_label, **layout_args ) fig['data'] = trace_list fig['layout'] = layout if not return_plotly_figure: iplot(fig) return None return fig
[docs] def average_ensemble(self): """ Generate a single Results object with a Trajectory that is made of the means of all trajectories' outputs :returns: The Results object """ trajectory_list = self.data number_of_trajectories = len(trajectory_list) output_trajectory = Trajectory(data={}, model=trajectory_list[0].model, solver_name= trajectory_list[0].solver_name) for species in trajectory_list[0]: # Initialize the output to be the same size as the inputs output_trajectory[species] = [0]*len(trajectory_list[0][species]) output_trajectory['time'] = trajectory_list[0]['time'] # Add every value of every Trajectory Dict into one output Trajectory for i in range(0, number_of_trajectories): trajectory_dict = trajectory_list[i] for species in trajectory_dict: if species == 'time': continue for k in range(0, len(output_trajectory[species])): output_trajectory[species][k] += trajectory_dict[species][k] for species in output_trajectory: # Divide for mean of every value in output Trajectory if species == 'time': continue for i in range(0, len(output_trajectory[species])): output_trajectory[species][i] /= number_of_trajectories output_results = Results(data=[output_trajectory]) # package output_trajectory in a Results object return output_results
[docs] def stddev_ensemble(self, ddof=0): """ Generate a single Results object with a Trajectory that is made of the sample standard deviations of all trajectories' outputs. :param ddof: Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population standard deviation where ddof is 0. :type ddof: int :returns: the Results object """ from math import sqrt # pylint: disable=import-outside-toplevel trajectory_list = self.data number_of_trajectories = len(trajectory_list) if ddof == number_of_trajectories: from gillespy2.core import log # pylint: disable=import-outside-toplevel log.warning("ddof must be less than the number of trajectories. Using ddof of 0") ddof = 0 average_list = self.average_ensemble().data[0] output_trajectory = Trajectory(data={}, model=trajectory_list[0].model, solver_name= trajectory_list[0].solver_name) for species in trajectory_list[0]: # Initialize the output to be the same size as the inputs output_trajectory[species] = [0]*len(trajectory_list[0][species]) output_trajectory['time'] = trajectory_list[0]['time'] for i in range(0, number_of_trajectories): trajectory_dict = trajectory_list[i] for species in trajectory_dict: if species == 'time': continue for k in range(0, len(output_trajectory['time'])): output_trajectory[species][k] += (trajectory_dict[species][k] - average_list[species][k])\ * (trajectory_dict[species][k] - average_list[species][k]) for species in output_trajectory: # Divide for mean of every value in output Trajectory if species == 'time': continue for i in range(0, len(output_trajectory[species])): output_trajectory[species][i] /= (number_of_trajectories - ddof) output_trajectory[species][i] = sqrt(output_trajectory[species][i]) output_results = Results(data=[output_trajectory]) # package output_trajectory in a Results object return output_results
[docs] def plotplotly_mean_stdev(self, xaxis_label="Time", yaxis_label="Value", title=None, show_title=False, show_legend=True, included_species_list=[], return_plotly_figure=False, ddof=0, **layout_args): """ Plot a plotly graph depicting the mean and standard deviation of a results object :param xaxis_label: The label for the x-axis :type xaxis_label: str :param yaxis_label: The label for the y-axis :type yaxis_label: str :param title: The title of the graph :type title: str :param show_title: If True, title will be shown on graph. :type show_title: bool :param show_legend: Default True, if False, legend will not be shown on graph. :type show_legend: bool :param included_species_list: A list of strings describing which species to include. By default displays all species. :type included_species_list: list :param return_plotly_figure: Whether or not to return a figure dicctionary of data(graph object traces) and layout which may be edited by the user :type return_plotly_figure: bool :param ddof: Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population standard deviation where ddof is 0. :type ddof: int :param **layout_args: Optional additional arguments to be passed to plotlys layout constructor. :type **layout_args: dict """ # Backwards compatibility with xaxis_label argument (which duplicates plotly's xaxis_title argument) if layout_args.get('xaxis_title') is not None: xaxis_label = layout_args.get('xaxis_title') layout_args.pop('xaxis_title') if layout_args.get('yaxis_title') is not None: yaxis_label = layout_args.get('yaxis_title') layout_args.pop('yaxis_title') average_trajectory = self.average_ensemble().data[0] stddev_trajectory = self.stddev_ensemble(ddof=ddof).data[0] from plotly.offline import init_notebook_mode, iplot # pylint: disable=import-outside-toplevel import plotly.graph_objs as go # pylint: disable=import-outside-toplevel init_notebook_mode() if not show_title: title = 'Mean and Standard Deviation' else: if title is None: title = (self._validate_title(show_title) + " - Mean and Standard Deviation") trace_list = [] for species in average_trajectory: if species != 'time': if species not in included_species_list and included_species_list: continue upper_bound = [] lower_bound = [] for i in range(0, len(average_trajectory[species])): upper_bound.append(average_trajectory[species][i] + stddev_trajectory[species][i]) lower_bound.append(average_trajectory[species][i] - stddev_trajectory[species][i]) # Append upper_bound list to trace_list trace_list.append( go.Scatter( name=species + ' Upper Bound', x=average_trajectory['time'], y=upper_bound, mode='lines', marker=dict(color="#444"), line=dict(width=1, dash='dot'), legendgroup=str(average_trajectory[species]), showlegend=False ) ) trace_list.append( go.Scatter( x=average_trajectory['time'], y=average_trajectory[species], name=species, fillcolor='rgba(68, 68, 68, 0.2)', fill='tonexty', legendgroup=str(average_trajectory[species]), ) ) # Append lower_bound list to trace_list trace_list.append( go.Scatter( name=species + ' Lower Bound', x=average_trajectory['time'], y= lower_bound, mode='lines', marker=dict(color="#444"), line=dict(width=1, dash='dot'), fillcolor='rgba(68, 68, 68, 0.2)', fill='tonexty', legendgroup=str(average_trajectory[species]), showlegend=False ) ) layout = go.Layout( showlegend=show_legend, title=title, xaxis_title=xaxis_label, yaxis_title=yaxis_label, legend={'traceorder': 'normal'}, **layout_args ) fig = dict(data=trace_list, layout=layout) if not return_plotly_figure: iplot(fig) return None return fig
[docs] def plot_mean_stdev(self, xscale='linear', yscale='linear', xaxis_label="Time", yaxis_label="Value" , title=None, show_title=False, style="default", show_legend=True, included_species_list=[], ddof=0, save_png=False, figsize=(18, 10)): """ Plot a matplotlib graph depicting mean and standard deviation of a results object. :param xaxis_label: The label for the x-axis :type xaxis_label: str :param yaxis_label: The label for the y-axis :type yaxis_label: str :param title: The title of the graph :type title: str :param show_title: Default False, if True, title will be displayed on the graph. :type show_title: bool :param style: Matplotlib style to be displayed on graph. :type style: str :param show_legend: Default to True, if False, legend will not be shown on graph. :type show_legend: bool :param included_species_list: A list of strings describing which species to include. By default displays all species. :type included_species_list: list :param ddof: Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population standard deviation where ddof is 0. :type ddof: int :type save_png: bool or str :param figsize: The size of the graph. A tuple of the form (width,height). Is (18,10) by default. :type figsize: tuple of ints (x,y) """ average_result = self.average_ensemble().data[0] stddev_trajectory = self.stddev_ensemble(ddof=ddof).data[0] import matplotlib.pyplot as plt # pylint: disable=import-outside-toplevel try: plt.style.use(style) except Exception: from gillespy2.core import log # pylint: disable=import-outside-toplevel msg = f"Invalid matplotlib style. Try using one of the following {plt.style.available}" log.warning(msg) plt.style.use("default") plt.figure(figsize=figsize) for species in average_result: if species == 'time': continue if species not in included_species_list and included_species_list: continue lower_bound = [a-b for a, b in zip(average_result[species], stddev_trajectory[species])] upper_bound = [a+b for a, b in zip(average_result[species], stddev_trajectory[species])] plt.fill_between(average_result['time'], lower_bound, upper_bound, color='whitesmoke') plt.plot(average_result['time'], upper_bound, color='grey', linestyle='dashed') plt.plot(average_result['time'], lower_bound, color='grey', linestyle='dashed') plt.plot(average_result['time'], average_result[species], label=species) if not show_title: title = 'Mean and Standard Deviation' else: if title is None: title = (self._validate_title(show_title) + " - Mean and Standard Deviation") plt.title(title, fontsize=18) plt.xlabel(xaxis_label) plt.ylabel(yaxis_label) plt.xscale(xscale) plt.yscale(yscale) plt.plot([0], [11]) if show_legend: plt.legend(loc='best') if isinstance(save_png, str): plt.savefig(save_png) elif save_png: plt.savefig(title)
# for backwards compatability, we need to keep the old name around
[docs] def plotplotly_std_dev_range(self, **kwargs): """ Plot a plotly graph depicting the mean and standard deviation of a results object :param xaxis_label: The label for the x-axis :type xaxis_label: str :param yaxis_label: The label for the y-axis :type yaxis_label: str :param title: The title of the graph :type title: str :param show_title: If True, title will be shown on graph. :type show_title: bool :param show_legend: Default True, if False, legend will not be shown on graph. :type show_legend: bool :param included_species_list: A list of strings describing which species to include. By default displays all species. :type included_species_list: list :param return_plotly_figure: Whether or not to return a figure dicctionary of data(graph object traces) and layout which may be edited by the user :type return_plotly_figure: bool :param ddof: Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population standard deviation where ddof is 0. :type ddof: int :param **layout_args: Optional additional arguments to be passed to plotlys layout constructor. :type **layout_args: dict """ from gillespy2.core import log # pylint: disable=import-outside-toplevel log.warning( "The plotplotly_std_dev_range function has been deprecated. This function will be removed in a " "future release. Please use plotplotly_mean_stdev instead." ) self.plotplotly_mean_stdev(**kwargs)
# for backwards compatability, we need to keep the old name around
[docs] def plot_std_dev_range(self, **kwargs): """ Plot a matplotlib graph depicting mean and standard deviation of a results object. :param xaxis_label: The label for the x-axis :type xaxis_label: str :param yaxis_label: The label for the y-axis :type yaxis_label: str :param title: The title of the graph :type title: str :param show_title: Default False, if True, title will be displayed on the graph. :type show_title: bool :param style: Matplotlib style to be displayed on graph. :type style: str :param show_legend: Default to True, if False, legend will not be shown on graph. :type show_legend: bool :param included_species_list: A list of strings describing which species to include. By default displays all species. :type included_species_list: list :param ddof: Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population standard deviation where ddof is 0. :type ddof: int :type save_png: bool or str :param figsize: The size of the graph. A tuple of the form (width,height). Is (18,10) by default. :type figsize: tuple of ints (x,y) """ from gillespy2.core import log # pylint: disable=import-outside-toplevel log.warning( "The plot_std_dev_range function has been deprecated. This function will be removed in a " "future release. Please use plot_mean_stdev instead." ) self.plot_mean_stdev(**kwargs)