Source code for stochss_compute.server.run

'''
stochss_compute.server.run
'''
# StochSS-Compute is a tool for running and caching GillesPy2 simulations remotely.
# Copyright (C) 2019-2023 GillesPy2 and StochSS developers.

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

import random
from datetime import datetime
from secrets import token_hex

from tornado.web import RequestHandler
from tornado.ioloop import IOLoop
from distributed import Client, Future
from gillespy2.core import Results
from stochss_compute.core.messages import SimStatus, SimulationRunRequest, SimulationRunResponse
from stochss_compute.server.cache import Cache


[docs]class RunHandler(RequestHandler): ''' Endpoint for running Gillespy2 simulations. '''
[docs] def initialize(self, scheduler_address, cache_dir): ''' Sets the address to the Dask scheduler and the cache directory. :param scheduler_address: Scheduler address. :type scheduler_address: str :param cache_dir: Path to the cache. :type cache_dir: str ''' self.scheduler_address = scheduler_address self.cache_dir = cache_dir
[docs] async def post(self): ''' Process simulation run request. ''' sim_request = SimulationRunRequest.parse(self.request.body) sim_hash = sim_request.hash() log_string = f'{datetime.now()} | <{self.request.remote_ip}> | Simulation Run Request | <{sim_hash}> | ' cache = Cache(self.cache_dir, sim_hash) if not cache.exists(): cache.create() empty = cache.is_empty() if not empty: # Check the number of trajectories in the request, default 1 n_traj = sim_request.kwargs.get('number_of_trajectories', 1) # Compare that to the number of cached trajectories trajectories_needed = cache.n_traj_needed(n_traj) if trajectories_needed > 0: sim_request.kwargs['number_of_trajectories'] = trajectories_needed print(log_string + f'Partial cache. Running {trajectories_needed} new trajectories.') client = Client(self.scheduler_address) future = self._submit(sim_request, sim_hash, client) self._return_running(sim_hash, future.key) IOLoop.current().run_in_executor(None, self._cache, sim_hash, future, client) else: print(log_string + 'Returning cached results.') results = cache.get() ret_traj = random.sample(results, n_traj) new_results = Results(ret_traj) new_results_json = new_results.to_json() sim_response = SimulationRunResponse(SimStatus.READY, results_id = sim_hash, results = new_results_json) self.write(sim_response.encode()) self.finish() if empty: print(log_string + 'Results not cached. Running simulation.') client = Client(self.scheduler_address) future = self._submit(sim_request, sim_hash, client) self._return_running(sim_hash, future.key) IOLoop.current().run_in_executor(None, self._cache, sim_hash, future, client)
def _cache(self, sim_hash, future: Future, client: Client): results = future.result() client.close() cache = Cache(self.cache_dir, sim_hash) cache.save(results) def _submit(self, sim_request, sim_hash, client: Client): model = sim_request.model kwargs = sim_request.kwargs n_traj = kwargs.get('number_of_trajectories', 1) if "solver" in kwargs: from pydoc import locate kwargs["solver"] = locate(kwargs["solver"]) # keep client open for now! close? key = f'{sim_hash}:{n_traj}:{token_hex(8)}' future = client.submit(model.run, **kwargs, key=key) return future def _return_running(self, results_id, task_id): sim_response = SimulationRunResponse(SimStatus.RUNNING, results_id=results_id, task_id=task_id) self.write(sim_response.encode()) self.finish()