sciope.models package¶
Submodules¶
sciope.models.ann_regressor module¶
Artificial Neural Network (ANN) Regression Surrogate Model
- class sciope.models.ann_regressor.ANNModel(use_logger=False)[source]¶
Bases:
sciope.models.model_base.ModelBase
We use the sklearn MLP Regressor implementation here.
sciope.models.gp_regressor module¶
Gaussian Process Regression Surrogate Model using sklearn
- class sciope.models.gp_regressor.GPRModel(use_logger=False)[source]¶
Bases:
sciope.models.model_base.ModelBase
We use the sklearn GP Regressor implementation here.
sciope.models.label_propagation module¶
Semi-supervised Label Propagation Surrogate Model
- class sciope.models.label_propagation.LPModel(kernel='rbf', alpha=0.7, gamma=0.1, learning_rate=1.0, use_logger=False)[source]¶
Bases:
sciope.models.model_base.ModelBase
We use the sklearn Label Spreading implementation here.
- objective(x)[source]¶
Objective function for hyper-parameter selection/evaluation
x : hyper-parameter under test - gamma
- float
a measure directly proportional to entropy
- optimize(min_, max_, niter=10, stepsize=0.1)[source]¶
hyper-parameter optimization using basinhopping
min_ : lower bound for parameter search max_ : upper bound for parameter search niter : number of allowed optimization iterations stepsize : displacement step size
- vector
optimized hyper-parameters
sciope.models.model_base module¶
Surrogate Model Base Class
- class sciope.models.model_base.ModelBase(name, use_logger=False)[source]¶
Bases:
object
Base class for surrogate models. Must not be used directly! Each model type must implement the methods described herein:
ModelBase.train(x,y)
ModelBase.predict(xt)
The following variables are available to derived classes:
self.x (training inputs)
self.y (training targets)
self.my (mean for scaling)
self.sy (std dev for scaling)
self.n (num training points)
- abstract predict(test_input)[source]¶
Sub-classable method for predicting test data. Each derived class must implement.
sciope.models.svm_regressor module¶
Support Vector Machine Regression Surrogate Model
- class sciope.models.svm_regressor.SVRModel(use_logger=False)[source]¶
Bases:
sciope.models.model_base.ModelBase
We use the sklearn SVM implementation here.
- predict(xt)[source]¶
Predict unseen data using the trained model
- xtnd-array
unseen data to be predicted
- vector
predictions