sciope.inference package¶
Submodules¶
sciope.inference.abc_inference module¶
Approximate Bayesian Computation
- class sciope.inference.abc_inference.ABC(data, sim, prior_function, epsilon=0.1, summaries_function=<sciope.utilities.summarystats.burstiness.Burstiness object>, distance_function=<sciope.utilities.distancefunctions.euclidean.EuclideanDistance object>, summaries_divisor=None, use_logger=False)[source]¶
Bases:
sciope.inference.inference_base.InferenceBase
Approximate Bayesian Computation Rejection Sampler
Properties/variables: * data (observed / fixed data) * sim (simulator function handle) * prior_function (prior over the simulator parameters) * epsilon (acceptance tolerance bound) * summaries_function (summary statistics calculation function) * distance_function (function calculating deviation between simulated statistics and observed statistics) * summaries_divisor (numpy array of maxima - used for normalizing summary statistic values) * use_logger (whether logging is enabled or disabled)
Methods: * infer (perform parameter inference)
- compute_fixed_mean(chunk_size)[source]¶
Computes the mean over summary statistics on fixed data
- chunk_sizeint
the partition size when splitting the fixed data. For avoiding many individual tasks in dask if the data is large
- ndarray
scaled distance
- infer(num_samples, batch_size, chunk_size=10, ensemble_size=1, normalize=True)[source]¶
Wrapper for rejection sampling. Performs ABC rejection sampling
- num_samplesint
The number of required accepted samples
- batch_sizeint
The batch size of samples for performing rejection sampling
- chunk_sizeint
The partition size when splitting the fixed data. For avoiding many individual tasks in dask if the data is large. Default 10.
- ensemble_sizeint
In case we have an ensemble of responses
- normalizebool
Whether summary statistics should be normalized and epsilon be interpreted as a percentage
- dict
Keys ‘accepted_samples: The accepted parameter values’, ‘distances: Accepted distance values’, ‘accepted_count: Number of accepted samples’, ‘trial_count: The number of total trials performed in order to converge’, ‘inferred_parameters’: The mean of accepted parameter samples
- rejection_sampling(num_samples, batch_size, chunk_size, ensemble_size, normalize)[source]¶
Perform ABC inference according to initialized configuration.
- num_samplesint
The number of required accepted samples
- batch_sizeint
The batch size of samples for performing rejection sampling
- chunk_sizeint
the partition size when splitting the fixed data. For avoiding many individual tasks in dask if the data is large.
- dict
Keys ‘accepted_samples: The accepted parameter values’, ‘distances: Accepted distance values’, ‘accepted_count: Number of accepted samples’, ‘trial_count: The number of total trials performed in order to converge’, ‘inferred_parameters’: The mean of accepted parameter samples
sciope.inference.bandits_abc module¶
sciope.inference.inference_base module¶
Parameter Inference Base Class